O

Del Bit al String




CONTENIDO

Introduccion a la Informatica

Conceptos Basicos del Desarrollo Software

Paradigmas de programacion y Ecosistema
Web

Algoritmia y Estructura de datos

Concurrencia



Hola!

Carlos Muino

Fullstack Developer at
(@String-Projects.

(@camumino



O

©,
Conceptos Basicos del

" Desarrollo Software



Estructuras de datos

Algoritmia

Refactorizacion



Data Structures

l

Buit-in Data

Structures
1

l

Integer

Float

Character

Pointer

|

User Defined
Data Structures

|

I

Arrays

Lists

Files

Linear Lists

Non-Linear Lists

Stacks

Queues

Trees

Graphs




ARRAYS

|4

Index

Insert

Get

Delete

Size



STACKS




QUEUES

Remove previous elements

<

1 <—Front

A O N

<— Back

=

Insert new elements

Enqueue
Dequeue
1IsEmpty

Top



LINKED LIST

Head

=

| o

InsertAtEnd
InsertAtHead
Delete

DeleteAtHead
Search
1IsEmpty

10



GRAPHS

11



TREES

SIS

Root .
Parent . 3

Child -

Leaf 2416

Sibling -

12



'
<
VI
o0
D)
>
O
Y
L
©
1
>
C\-
L
O
e
(O
=
~
&
O
O
O
O
-
e
-
O
S
S
=
=
7))
=
e




lllllllll

@6 HANG A SALAMI!
I'MA LASAGNA HOG j

Pl ndr m 1 @
by JON AGEE <




function isPalindrom(sentence) {

}

let sentencel ‘level’;
let sentence2 "house ' ;
let sentence3 'stats’;
let sentence4 '

cat';

isPalindrom(sentencel) ;
isPalindrom(sentence2) ;
isPalindrom(sentence3);
isPalindrom(sentence4) ;

15



function isPalindrom(sentence) {
var len = sentence.length;
(var 1 = 8; 1 < 1len/2; 1++) {
(sentence[i] sentence[len
false;

16



function isPalindrom(sentence) {
sentence sentence.split('"').reverse().join("'");

17



SAXR

Refactoring

Improving the Design of Existing Code



Composing Methods

Much of refactoring is devoted to correctly composing methods. In most cases, excessively long methods are the
root of all evil. The vagaries of code inside these methods conceal the execution logic and make the method
extremely hard to understand - and even harder to change.

ﬁ ﬁ % The refactoring techniques in this group streamline methods, remove code duplication, and pave the way for
@ future improvements.

§ Extract Method § Replace Temp with Query § Replace Method with Method
§ Inline Method § Split Temporary Variable Object
§ Extract Variable § Remove Assignments to § Substitute Algorithm

§ Inline Temp Parameters

19



Extract Variable

Problem

You have an expression that’s hard to

understand.

void renderBanner() {
if ((platform.toUpperCase().index0f("MAC") > =1) &&

(browser.toUpperCase().index0f("IE") > =1) &&
wasInitialized() && resize > @ )

// do something

¥
¥



Extract Variable

Solution

Place the result of the expression or its parts
in separate variables that are self-
explanatory.

void renderBanner() {
final boolean isMacOs = platform.toUpperCase().index0f("MAC") > -1;
final boolean isIE = browser.toUpperCase().index0f("IE") > -1;
final boolean wasResized = resize > 0;

if (isMacOs && isIE && wasInitialized() && wasResized) {
// do something

}



Moving Features between Objects

Even if you have distributed functionality among different classes in a less-than-perfect way, there is still hope.

These refactoring techniques show how to safely move functionality between classes, create new classes, and
hide implementation details from public access.

§ Move Method § Hide Delegate § Introduce Foreign Method
§ Move Field § Remove Middle Man § Introduce Local Extension
§ Extract Class

§ Inline Class

22



Extract Class

Problem

When one class does the work of two,
awkwardness results.

name
officeAreaCode
officeNumber

getTelephoneNumber()




Extract Class

Solution

Instead, create a new class and place the
fields and methods responsible for the
relevant functionality in it.

Person TelephoneNumber

name 1 officeAreaCode
o ; officeNumber

getTelephoneNumber()

getTelephoneNumber()




Organizing Data

These refactoring techniques help with data handling, replacing primitives with rich class functionality. Another

important result is untangling of class associations, which makes classes more portable and reusable.

§ Change Value to Reference

§ Change Reference to Value

§ Duplicate Observed Data

§ Self Encapsulate Field

§ Replace Data Value with Object

§ Replace Array with Object

§ Change Unidirectional
Association to Bidirectional

§ Change Bidirectional
Association to Unidirectional

§ Encapsulate Field
§ Encapsulate Collection

§ Replace Magic Number with
Symbolic Constant

§ Replace Type Code with Class

§ Replace Type Code with
Subclasses

§ Replace Type Code with
State/Strategy

§ Replace Subclass with Fields

25



Encapsulate Field

Problem

You have a public field.

class Person {

public String name;
b



Encapsulate Field

Solution

Make the field private and create access
methods for it.

class Person {
private String name;

public String getName() {
return name;
¥
public void setName(String arg) {
name = arg;
¥
¥



Simplifying Conditional Expressions

Conditionals tend to get more and more complicated in their logic over time, and there are yet more techniques

to combat this as well.

§ Consolidate Conditional
Expression

§ Consolidate Duplicate
Conditional Fragments

§ Decompose Conditional

§ Replace Conditional with
Polymorphism

§ Remove Control Flag

§ Replace Nested Conditional
with Guard Clauses

§ Introduce Null Object

& Introduce Assertion

28



Consolidate
Conditional Expression

Problem

You have multiple conditionals that lead to
the same result or action.

double disabilityAmount() {
if (seniority < 2) {
return 0;

¥
if (monthsDisabled > 12) {

return 0;

¥
if (isPartTime) {
return 0;

b
// Compute the disability amount.

[/ eas



Consolidate
Conditional Expression

Solution

Consolidate all these conditionals in a single

expression.

double disabilityAmount() {
if (isNotEligableForDisability()) {
return 0;

}
// Compute the disability amount.

[/ oas
g



Consolidate Duplicate
Conditional Fragments

Problem

Identical code can be found in all branches
of a conditional.

if (isSpecialDeal()) {
total = price x 0.95;
send();

¥

else {
total = price x 0.98;
send();

¥



Consolidate Duplicate
Conditional Fragments

Solution

Move the code outside of the conditional.



interaction between classes.

§ Add Parameter
§ Remove Parameter
§ Rename Method

§ Separate Query from Modifier

§ Parameterize Method

§ Introduce Parameter Object
§ Preserve Whole Object
§ Remove Setting Method

§ Replace Parameter with
Explicit Methods

§ Replace Parameter with
Method Call

These techniques make method calls simpler and easier to understand. This, in turn, simplifies the interfaces for

§ Hide Method

§ Replace Constructor with
Factory Method

§ Replace Error Code with
Exception

§ Replace Exception with Test

33



Rename Method

Problem Solution

The name of a method doesn’t explain what Rename the method.
the method does.

Customer Customer

getsnm() getSecondName()




Parameterize Method

Problem Solution
Multiple methods perform similar actions Combine these methods by using a
that are different only in their internal parameter that will pass the necessary
values, numbers or operations. special value.
Employee Employee
fivePercentRaise() raise(percentage)
tenPercentRaise() \




Dealing with Generalization

Abstraction has its own group of refactoring techniques, primarily associated with moving functionality along
the class inheritance hierarchy, creating new classes and interfaces, and replacing inheritance with delegation
and vice versa.

§ Pull Up Field § Extract Subclass § Form Template Method
§ Pull Up Method § Extract Superclass § Replace Inheritance with
§ Pull Up Constructor Body § Extract Interface Delegation

§ Push Down Field § Collapse Hierarchy § Replace Delegation with

Inheritance

§ Push Down Method






[ool can write code fLa{ a computer can
ersfanJ G ocj r ozrammers write coJe
Jers{amj

fl'\af Lumans can un




Gracias!

JPreguntas?

(@camumino
camumino@gmail.com

39



